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[i] Electronic sensors generate valuable streams of forcing and validation data for
hydrologic models but are often subject to noise which must be removed as part of model
input and testing database development. We developed an automated precipitation
correction program (APCP) for weighing bucket precipitation gauge records, which are
subject to several types of mechanical and electronic noise and discontinuities,
including gauge maintenance, missing data, wind vibration, and sensor drift. Corrected
cumulative water year precipitation from APCP did not exhibit an error bias and
matched measured water year total precipitation within 2.1% for 58 station years
tested. Removal of low-amplitude periodic noise was especially important for
developing accurate instantaneous precipitation records at subdaily time steps. Model
flexibility for use with other data types is demonstrated through application to time
domain reflectometry soil moisture content data, which are also frequently subject to
substantial noise.
Citation: Nayak, A., D. G. Chandler, D. Marks, J. P. McNamara, and M. Seyfried (2008), Correction of electronic record for
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1. Introduction
[2] Continuous, accurate data for precipitation and soil

moisture are critical as inputs and validation data for
hydrological models. Many hydrological processes occur
at subdaily time steps. Modeling these processes requires
accurate data at the time step of the model [Haddeland et
al, 2006]. Manually filtering such data is tedious, subjec-
tive, and time-consuming work. In this note we describe an
automated program that corrects mechanical errors and
noise typical of electronically recorded, weighing bucket-
type precipitation gauges. Extension of the program to
electronic data from other instruments is also demonstrated
using time domain reflectometry (TDR) data.

[3] The weighing bucket gauge is commonly used in
environments receiving precipitation both as rain and snow.
Weighing bucket precipitation gauge data are intrinsically
cumulative. To process time series precipitation values from
cumulative data, it is necessary to derive unbiased instanta-
neous differences from the cumulative record. Although
common, mechanical errors associated with weighing bucket
gauges have received only passing attention as part of
comparative studies [Nystuen, \999\Duchon and Essenberg,
2001].
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[4] We classify several types of mechanical errors present
in weighing bucket gauge data as either high- or low-
amplitude noise. High-amplitude noise can be caused by
out of range data values, bucket decanting, bucket recharge,
and intermittent noise. Out of range data can arise during
periods of instrument or data logger failure and be recorded
as null or extreme negative values, resulting in discontinu-
ities in the precipitation record (Figure la). During instru-
ment servicing the gauge bucket is decanted and then
recharged with mineral oil and antifreeze. Bucket decanting
introduces large instantaneous changes in weight that are
generally negative (Figure Ib), but can be positive depend-
ing on the mass of liquid with which the bucket is recharged
(Figure Ic). Occasionally, the gauge record is subject to
large instantaneous changes from intermittent electronic
noise (Figure Id). Low-amplitude noise may be periodic
(Figure le), due to the effects of temperature fluctuations on
instrument electronics, or episodic (Figure If), due to wind
vibration of the gauge [Hanson et al, 2001; Hanson et al,
1979]. Although low-amplitude noise does not affect long-
term aggregate precipitation measurements, it is difficult to
manually separate from subdaily precipitation data and can
obscure the beginning and end of precipitation events.

2. Program Description
[5] The automated precipitation correction program

(APCP) utility was developed in Visual Basic 6.0 to process
high-frequency cumulative precipitation records, fill data
gaps, remove discontinuous data and filter mechanical and
electronic noise (see auxiliary material).1 APCP compares

Auxiliary material data sets are available at ftp://ftp.agu.org/apend/wr/
2008wr006875. Other auxiliary material files are in the HTML.
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Figure 1. Types of mechanical errors present in gauge measurements: (a) out of range data, (b) bucket
decanting, (c) bucket recharge, (d) intermittent noise, (e) periodic noise, and (f) episodic noise. Open gray
diamonds show unprocessed data, and lines show data processed using APCP.
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the difference in consecutive records to user-defined limits in
two separate cycles to successively remove high-amplitude
then low-amplitude noise. User-defined parameters and
value ranges used in the examples are provided in
Table 1. Both BucketDecanting and BucketRecharge limits
are set smaller than the minimum absolute change in data
records because of bucket decanting and bucket recharge,
respectively. Similarly, the Noise limit is set smaller than
BucketDecanting and BucketRecharge but greater than the
maximum low-amplitude noise.

3. Test Data
[6] The U.S. Department of Agriculture Agricultural

Research Service Northwest Watershed Research Center
(ARS-NWRC) operates a network of precipitation gauges
in Reynolds Creek Experimental Watershed (RCEW). Each
measurement location has one unshielded and one shielded
Belfort universal recording gauge. The gauges have an
orifice diameter of 203 mm, 305 mm capacity [Hanson et
al, 2001; Hanson, 2001] and an absolute sensitivity of

±0.25 mm [Kuligowski, 1997]. Precipitation depth in the
gauge collection bucket is measured at 15 min intervals by
load cell and recorded electronically on a data logger. The
APCP correction technique is applied to 22 dual gauge
stations in RCEW for water years 1997-2005 (October
through September). The gauge sites range in mean annual
precipitation from 236 to 1123 mm [Hanson, 2001].

[7] A long experience with weighing bucket gauge data
has led the NWRC to develop extensive quality control
protocols and quality analysis techniques. Through 2004,
the NWRC used the graphical tool "Rainfall Analyzer"
(RA) to manually filter, correct and process raw precipita-
tion data. This method requires 1—3 days per station year
and results are subject to operator bias. Nevertheless, to our
knowledge RA is the most sophisticated data filter available
for weighing type bucket gauges and we used data pro-
cessed with the RA to evaluate the effectiveness of ACPC.
Total gauge catch was added as a supplemental measure of
quality analysis. This value is a direct volumetric measure-
ment of gauge catch, recorded during gauge maintenance

Table 1. User-Defined Parameters Used in APCP Program and Values Used to Process Example Data

Parameter Description Value Range for Precipitation (mm) Values for TDR (m m 3)

BucketDecanting
BucketRecharge
Noise
NoData

Bucket decanting limit
Bucket recharge limit

Threshold of high-magnitude noise
Out of range value

1.9-7.5
14.9-50.0
1.75-2.65

-6999, 9999

1.0
1.0

0.025
-6999

2 of 6



WOOD11 NAYAK ET AL.: AUTOMATED PRECIPITATION GAUGE CORRECTION WOOD11

600-

500-

1 400

O Estimated Catch
__ Measured
—— Manual
---RA

APCP

120 180 240
Day of Water Year

300 360

Figure 2. Measured total, raw, and corrected data by spreadsheet (manual), graphical (RA), and
automated (APCP) techniques for shielded gauge, site 176, water year 2004. At the annual scale, all
corrected series appear coincident. At subdaily scale (inset), manually and RA corrected data diverge
from APCP data.

and summed annually. Corrected data from APCP and RA
are compared to total annual gauge catch for eleven dual
gauge stations for water years 2002-2004.

[8] As a demonstration of the capability of APCP to
remove random noise from other data, we applied the
program to TDR data. The data were collected in the Dry
Creek Experimental Watershed near Boise, Idaho, in coarse-
loamy, mixed mesic Ultic Haploxerolls [Harkness, 1997;
McNamara et al, 2005]. The TDR waveguides were 30 cm
in length and logged hourly using TDR 100, coaxial multi-
plexers and CR10X data loggers (Campbell Scientific,
Logan, Utah). Data filtering was performed with the first
cycle of APCP only, since these data are not cumulative.
Contemporaneous data from a proximal water content
reflectometer (WCR, Campbell Scientific, Logan, Utah)

which was previously calibrated with TDR [Chandler et
al, 2004] is provided for comparison.

4. Illustration of Method
[9] The goal of data processing is noise and error removal

without introducing bias. To demonstrate the function of
APCP for each defined category of mechanical error, we
present example comparisons of raw and APCP processed
data at the scale of each error (Figure 1). The error
categories "Out of Range Data," "Bucket Decanting,"
"Bucket Recharge" and "Intermittent Noise" occur as
instances or constant value shifts from the "true" baseline.
These errors are simply corrected relative to local baseline
cumulative precipitation by ACPC cycle 1. Establishing a

200 400 600 800 1000 1200

annual precipitation (mm)
200 400 600 800 1000 1200

annual precipitation (mm)

Figure 3. Errors with respect to total annual gauge catch: (left) rainfall analyzer (RA) and (right)
automated precipitation correction program (APCP). Solid diamonds show shielded gauges, and open
squares show unshielded gauges.
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Figure 4. Frequency of instantaneous precipitation values
following cycle 1 and cycle 2 of the automated precipitation
correction program for daily, hourly, and 15 min time steps.

local baseline is more complicated over the temporal scale
of "Periodic Noise," which is by definition a quasi-regular
waveform around the expected value, and for "Episodic
Noise," which superimposes random noise onto the diurnal
signal of "Periodic Noise" (Figures le and If). The
uncertainty in baseline cumulative precipitation during
Periodic and Episodic Noise, as complicated by coincident
high-magnitude noise and precipitation, is the greatest
potential source of error and bias in data correction for
cumulative gauge records.

[10] In the case of cumulative precipitation, the match
between processed and raw cumulative gauge catch data is a
qualitative measure of the accuracy of APCP. Such a
comparison requires developing a cumulative record from
raw data by correction of negative steps in the measured
record from bucket decanting, for instance by APCP cycle
1. Figure 2 presents a comparison among: the uncorrected
15 min interval data from a shielded gauge, the cumulative
record following manual correction for bucket decanting
and recharge, the APCP output, and RA output. All three
correction approaches maintain the basic structure of the
time series data and match the incremental total catch at
the annual time scale. However, at subdaily time scale, the
cumulative records for manual correction, RA and APCP
often diverge at the millimeter scale (Figure 2, inset)
because of differences in the approach to processing peri-
odic and episodic noise.

[n] We tested for bias between annual total gauge catch
and annual cumulative corrected precipitation records from
both APCP and RA for 58 station years (Figure 3). APCP
corrected annual total precipitation is consistently close to
the annual total gauge catch. The mean difference and
standard deviation were —0.6 mm (—0.1%) and 3.4 mm
(0.6%), respectively, for shielded gauge measurements and
-0.2 mm (-0.02%) and 2.1 mm (0.5%), respectively, for
unshielded gauge measurements. In contrast, RA results
show a mean difference and standard deviation of —2.7 mm
(-0.5%) and 11.3 mm (2.1%), respectively, for shielded
gauge measurements and -1.0 mm (0.4%) and 12.9 mm
(3.4%), respectively, for unshielded gauge measurements.
Because APCP is not affected by operator bias, corrected
water year precipitation data may be replicated within
minutes by different operators. Depending on the extent
of noise, manual data processing may require 1-3 days per
station year and output records may differ among operators.

[12] As an example of the temporal-scale dependence of
the contribution of low-amplitude noise to error in the
instantaneous precipitation record, we compare distributions
for daily, hourly, and 15 min time steps for a single station
year (Figure 4). Once again, APCP cycle 1 is used to
remove all major noise and cycle 2 is then used to filter
the low-amplitude noise. In general, reducing the time step
increases the number of periods with precipitation, reduces
depth per event, and increases the number of periods with
noise-induced apparent "negative" precipitation. Excluding
the nil instantaneous precipitation data, which were most
frequent for all time steps, two clear trends emerge. First,
the instances of precipitation represented by cycle 1 exceed

Table 2. Instantaneous Precipitation Occurrence Frequency and
Cumulative Annual Depth for Output From APCP Cycle 1 and
Cycle 2 at Daily, Hourly, and 15 min Time Steps

Daily
Hourly
15 min

Positive

Number

188
3895
13912

Cycle

Event

Sum
(mm)

491
721
1328

1

Negative

Number

130
3098
12030

Event

Sum
(mm)

-28
-246
-853

Cycle 2

Positive Event

Sum
Number (mm)

95 463
885 475

2081 475
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Figure 5. Noise removal from hourly TDR water content record with APCP cycle 1 and (offset)
comparative water content record from a calibrated water content reflectometer.

those by cycle 2 at all time steps, indicating the importance
of low-amplitude noise. Second, the number of representa-
tions of negative precipitation increases with decreasing
time step for scan 1 (Figure 4). Whereas the positive and
negative instantaneous precipitation values balance in the
annual record at all time steps, manual correction of
erroneous instantaneous precipitation values is clearly im-
practical for hourly and 15 min records because of the
exponential increase in number of errors as time step
decreases (Table 2). The absence of negative values follow-
ing scan 2 at any time step demonstrates that APCP is
robust across time steps.

[13] APCP does not eliminate the requirement for careful
observation of raw data and field notes. APCP may not
remove all noise satisfactorily when the amplitude of noise
caused by site maintenance is very small. In this case it is
necessary to remove these errors from the raw precipitation
record before using APCP. It is also recommended that the
processed data generated by APCP be checked by compar-
ison with total annual gauge catch and visual inspection of
raw data to verify that all noise and discontinuities have
been removed satisfactorily.

[14] Application of APCP to hourly TDR data is demon-
strated in Figure 5. In this case, we assume that instanta-
neous changes in the hourly water content record greater
than 0.025 m3 m"3 in absolute value are associated with
noise. This approach identified 459 data records as noise
and adjusted them to the local average. Of the records
identified as noise, 70 were greater than 0.4 m3 m~3, 83
were less than the apparent residual moisture content of
0.045 m3 m"3 (29 were negative). Of the 306 adjusted data
values within the possible range of soil moisture (0.045-
0.40 m3 m~3), 128 were greater than the apparent field
capacity (0.24 m3 m~3). The remaining 178 identified
errors were random changes greater than the assumed
noise limit within the expected range of soil moisture,
for example the spikes near Julian day 160 (Figure 5). The
corrected TDR record is comparable to the calibrated
WCR record, which tends not to be subject to similar
noise problems at this site.

5. Summary
[15] The APCP utility was developed to extract continu-

ous, high-quality subdaily time step data from electronic

records subject to several types of noise and errors. The
method was applied successfully to weighing bucket pre-
cipitation records and TDR soil moisture records. The
precipitation data processed by APCP has less bias from
total gauge catch measurements and requires significantly
less time than the graphical RA approach. The program
capacity for objective removal of low-amplitude periodic
noise is extremely useful for calculating accurate subdaily
time step data from cumulative precipitation records. The
success of the APCP correction of TDR data indicates
further that the model can be used to filter electronic data
from other sensors important to hydrologic science.
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